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Recent results in the theory of integration of complex-valued functions with 
respect to a positive operator-valued measure are used to generalize the usual 
notion of coexistent observables. This leads to a connection between effects as 
observables and the quantization scheme of stochastic quantum mechanics. It 
also leads to a new viewpoint for the concept of a "classical apparatus" for 
quantum measurement which does not require a classical mechanical treatment 
of the apparatus from the outset. 

1. I N T R O D U C T I O N  

I address the question, " H o w  should  one mathematical ly  describe an 
observable in the quan tum sett ing?" Historically (discrete) observables in 
the quan tum measurement  process of  von N e u m a n n  (1955) arise f rom the 
repeatabil i ty axiom and are described by project ion-valued measures (spec- 
tral measures)  via the spectral theorem. More  recently, however,  it was seen 
that for cont inuous  observables (posit ion and momentum,  for example)  
there were no repeatable measurements  (Ozawa,  1984) f rom which to derive 
the project ion operators,  and that localization operators  were not adequate ly  
described by project ion-valued measures,  but  rather by positive operator-  
valued measures (POVs) (Jauch et al., 1967). This same POV structure was 
determined by Ludwig (1985) in his general analysis o f  measurement ,  and 
is denoted  "effect-valued measure"  in his terminology.  Furthermore,  these 
POVs were seen to occur  in the analysis o f  measurement  o f  m o m e n t u m  and 
posit ion (Holevo,  1982; Schroeck,  1981) and of  spin (Schroeck, 1982; Busch, 
1985b), al lowed for the localization of  the pho ton  (All and Emch,  1974), 
al lowed for the general localization o f  particles in the representat ions o f  
the Ga|ilei and Poincar~ groups  on wave funct ions defined over phase space 
(All and Prugove~ki, 1986; Ali et al., 1988; Brooke and Schroeck,  to appear) ,  
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play a central role in the analysis of quantum statistical analysis (Holevo, 
1982) and quantum entropy (Schroeck, 1985a), and are presently finding 
application in a wide variety of practical experimental situations. 

In the analysis of observables, it has been argued that linear combina- 
tions of observables are again observables (Emch, 1972). This should apply 
as well to these positive operators determined by an apparatus; I will review 
and extend that discussion below. I shall show that for a "classical" screen, 
with a very weak requirement for classicality, these linear combinations 
may be refined to give a form of integral. On the other hand, the integrals 
so obtained will be shown to correspond precisely with the integrals occurr- 
ing in the quantization of classical observables in the stochastic quantization 
scheme (Schroeck, 1985c). Since this quantization scheme also solves the 
so-called ordering problem of quantization, I will have strengthened the 
view that the measuring apparatus itself "solves" the ordering problem. 
Furthermore, the set of general observables obtained via these linear combi- 
nations and integrals will all be manifestly coexistent, having been measured 
simultaneously by a single apparatus. Since this set is not by any means 
necessarily commutative, one again recovers the known result that when 
using POVs to describe measurements, there is no necessity for coexistent 
observables to commute (Lahti, 1985; Schroeck, 1985b). 

The observables I obtain may be called "unsharp observables" (Busch, 
1985a) because of the method of  observation, and because no wavefunction 
can pass through the system without distortion or attenuation or both. 
Nonetheless, I show here that many of these observables possess purely 
discrete spectrum. This result, as well as the general mathematical apparatus 
I shall use, is based on recent analysis of integration of functions with 
respect to a positive operator-valued measure (Schroeck, 1988). 

2. T H E  O B S E R V A B L E S  OF A S I N G L E  A P P A R A T U S  F O R M  A 
L I N E A R  S P A C E  

Consider an experiment for which the outcome is a record on a screen, 
or a track or tracks in a gel, cloud chamber, spark chamber, etc. We may 
partition that screen, gel, cloud chamber, or spark chamber when we attempt 
to "read" the results, and lump the individual events in each cell of the 
partition into a single number, as we do with a multichannel analyzer. If 
we let X denote the entire space of outcomes (that is, the points on the 
screen, etc.), and let {Ai} be a finite partition of this space, then the process 
in which an incoming state with density p gives a result in A i might be 
described by 

p -~ E(~Xi) ' /2p~(A,)  '/2 (1) 
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where E(A~) is an effect in Ludwig's sense; i.e., E(A~) is a positive self- 
adjoint operator with 

0_< E(A~)_~ 1 (2a) 

E(A~) = E (~,/A~) (2b) 
i c l  

where {A~Ii ~ I} is a countable disjoint family, and 

E(X) = 1 (2c) 

In the special case that E(Ai) is a projection for each i, then (1) is the 
historical collapse scheme. Furthermore, according to the Davies and Lewis 
(1970; Davies, 1970) measurement scheme, the observable associated with 
this apparatus but in which only the events in cell A~ are counted, is given 
by E(A~) itself: 

Tr[E(A,)  U2pE(A,)U2] = Tr[ pE(A,)] (3) 

Of course we may also decide to lump together the results of two cells, 
or any finite number of cells for that matter, requiring the expression (2b) 
to hold. Similarly if we decide to further partition some of the cells. On the 
other hand, we may have decided that some of the cells of the screen, etc., 
are less efficient than others, and we may wish to compensate for this by 
weighting the results of cell A~ with compensation factor e~--> 0 to obtain 
the expected values 

~ c~ Tr[pE(Ai)]=Tr[ p ~ c~E(A~)] (4) 

There may be many other good experimental reasons (Emch, 1972) to 
consider as observables expressions of the form ~i eiE(Ai); so, I will not 
restrict the ci to being real and nonnegative in what follows. For full 
generality I will allow the e~ to be complex. 

In the preceding paragraph I focused on the behavior of  the observables 
under the process of "lumping together" the results of two cells. It would 
not necessarily be appropriate to focus instead on the states by adding two 
terms as in (1) to describe the effect of the "lumping together" on the 
resulting states. The process of adding terms of the form (1) creates a 
mixture of states and destroys correlations between them; however, the 
process of, say, opening two windows in a screen certainly yields correlations 
between the two components of the state, as the two-slit experiment 
demonstrates. This is exacerbated by the fact that there are infinitely many 
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alternatives to (1) to describe the measurement and which yield the same 
observables. For example, 

p-~ U,E(A,)'/2pE(Ai)'/2U~ (13 

where Ui is any unitary operator, yields the same corresponding observable 
E(Ai) via (3). Adding two terms such as (1') for any U~ yields the same 
"lumped together" observables as adding the corresponding terms of the 
form (1), although the states are different. I leave the form of  the state after 
measurement to an analysis of the object-apparatus interaction (which leads 
to the POV structure for the observables in any event). 

Let us assume, for an example, that our screen is in fact a photographic 
plate for a color photograph. Then the partition {Ai} may include a separ- 
ation of various parts of the color spectrum, and hence {A~} is a partition 
of configuration space x color spectrum space; that is, {A~} partitions the 
equivalent to phase space. More generally, any screen may have efficiency 
varying not only over configuration space, but also over momen- 
tum/frequency space. There may even be "windows" in momen- 
tum/frequency in which the screen is effectively transparent. Furthermore, 
we may have other dependences, such as charge, m a s s , . . . ,  all of  which 
may go into the description of the screen, for more sophisticated screens. 
Henceforth, the outcome space X will be taken to be a subset of  •" (or 
even an n-dimensional manifold), and need not be viewed simply as 
configuration space for physical interpretation. Less complicated observ- 
ables may be obtained by "marginality," that is, by summing over the full 
range of unwanted parameters. 

For practical physical interpretation and implementation, the partitions 
{A~}~ must be finite. In the case of a photographic plate, the fineness of 
the partition is limited by the size of the light-sensitive grains. Also, in 
analyzing such photographs (say, of particle tracks) where one magnifies 
the photograph and then converts events on the track to numerical form 
on a computer, one has an effective grid which provides the screen with a 
partition which is finite. One may refine these partitions by subdividing grid 
cells (until some limit such as grain size prohibits further refinement); 
however, as in the case with magnifying particle tracks, I will entertain the 
possibility of  achieving the continuum limit for all practical purposes. 

The discussion so far has been based on an analysis of screens. This 
should not be thought of  as a special situation, since a similar analysis 
applies in a wide range of generality. I mention, for another typical example, 
that it also applies to signal analysis. It is well known that the process of 
chopping a signal (and then analyzing the pieces) does drastic things to 
the signal, yet is a common processing mode for much of electronics. A 
more sophisticated method of analysis, free of any significant band pass or 
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time chopping of the signal, is made by comparing the signals with a 
standardized test signal r in the following fashion. 

Let U(t, d) denote the operation on test signal r of time shifting by t 
and frequency shifting by 6. Let s be the signal to be analyzed. Suppose 
one superimposes these to obtain s+ U(t, 8)r and records the intensity 

'(t, 6)=Ils+U(t ,  6)rl2=flsl2+flrl2+2Refs*U(t,~,'r 

where the integral is over a time interval sufficiently long to accumulate 
essentially all of the mixed signal. By cloning s and recording I(t, 6) for a 
variety of choices (t, 6), one obtains enough information to isolate 
If s*U(t, 6)rl by calculating the contrast (visibility) in I(t, 6) where r or s 
is farily monochromatic (Brooke and Schroeck to appear). However, writing { 2 

s*U(t, 6) =(s, U(t,a)r)(U(r,a)as)=(s,a(t,a)s) (5a) 

where 

a(t, 6) = u( / ,  6)lr>0-l U(t, 6) ~ (5b) 

we obtain directly from measurement the effects given by 

E(A) = Ia a(t, 6) dtd6 (6) 

This presumes we may generate a continuum of (t, 6) shifts with our 
apparatus. Practically speaking, we can only approximate this, usually with 
a very fine but wide range of (t, 8) shifts, approximating (6) with the analog 
of a Riemann sum. 

I emphasize that even though the a (t, 6) are each projections, they are 
not orthogonal for different (t, ~), and cannot be used to analyze s in the 
historical manner. Nonetheless, these E(A) are informationally complete 
(Klauder, 1964) in the sense that knowledge of all TripE(A)] for all A, or 
equivalently, knowledge of all Tr[ pa (t, 6)] for all (t, 6), uniquely determines 
p. For only a subset of such results, p may still be determined with high 
accuracy. In fact, this processing method is analogous to holography, since 
it encodes the full phase space (time-frequency) behavior of the signal s, 
rather than only recording its frequency behavior. I should remind the 
reader that complete knowledge of [s(t)l 2 and of [s 2, g the Fourier 
transform of s, does not uniquely determine s in general, just as pure 
position and pure momentum knowledge of I4,(x)l 2, resp. I~(k)l 2 does not 
uniquely determine ~b in general (Vogt, 1978; Corbett and Hurst, 1978; 
Prugove6ki, 1984; Pav~i6, 1985; Busch and Lahti, 1989). More information 
is stored in the joint probability distributions than in the separate "marginal" 
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distributions; i.e., more information is accessible by means of the POV than 
from the union of the spectral families for momentum and for position. 

I should note there that one usually does not generate U(t, ~)'r exactly 
with any realistic apparatus, because of instabilities of the apparatus as 
well as a form of the uncertainty principle for signal processing. Thus, (6) 
is closer to the experimental capability than (5b). Even closer to the actual 
experimental situation is the form 

A( f )  =--f f(t, 8)a(t, 8) dt d8 (7) 

where f is a probability distribution determined by the (instability of the) 
apparatus itself. It is also "an integral with respect to a POV"; and may be 
approximated, as I shall show, by Y.~ f(t~, 8~)E(A/), where A~ contains (t~, ~),  
and {Ai} is a partition of  the t ime-frequency domain. 

Once again, one may create additional observables from the effects 
given in form (6) or (7) by the same arguments concerning (4). 

3. CLASSIFICATION SCHEME FOR APPARATUSES 

I have argued that the following quantum structure should generally 
be associated with a quantum measuring device. 

Definition 1. Let X denote the output space of a measuring apparatus. 
Let ~ = {A,li -- 1 , . . . ,  n} be a finite, experimentally feasible partition of X;  
i.e., Ai n Aj = Q for i~j ,  I,_.J~= 1 Ai = X. For each A c ~, associate a positive 
operator A(A) such that Tr[ pA(A)] represents the relative frequency with 
which an event will be recorded in A. Then all operators of the form 

~, ciA(Ai), ci : c ( A i )  E C 
Aic~  

are observables for this apparatus. 

Definition 2. A quantum measuring apparatus is ideal if there is a finest 
implementable finite partition of X such that for each Ai in this finest 
partition, A(Ai) is a projection. 

I remark that the meaning of the adjective "ideal" here is not to be 
confused with that in "ideal measurement." 

Definition 3. A quantum measuring apparatus is classical if it allows 
arbitrarily fine partitions of outcome space X. 

Definition 4. An ideal quantum measuring apparatus is crystalline if it 
has outcome space X c R n (or an n-dimensional manifold) with a finest 
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feasible partition that is a regular array of unit cells which is (locally) 
invariant under "lattice translations" of  the form ~7=1 mies, where the e~ 
are translations along the edges of a unit cell and the ms are integers (in a 
bounded range for a finite crystal, but ideally exhausting the integers). 

Definition 5. Let { Ug]g e G} be a unitary (antiunitary) group of sym- 
metries for a quantum system. Then a quantum measuring apparatus is 
covariant with respect to this symmetry group if there is a natural action 
g[ .  ] of  g on the outcome space X such that 

U(g)A(A) U(g)* = A(g[A]) (8) 

where {A(A)} is the set of  effects associated with the apparatus and A is an 
allowed cell in any feasible partition. 

Examples. (i) I f  the apparatus is crystalline (with no boundary) with 
X = configuration space with uniform efficiency of measuring, and if G is 
the symmetry group of this lattice, then (8) holds. (ii) In the signal analysis 
example, G may be taken as the group of all time translations and frequency 
shifts. From the interpretation of time as distance from the source (distance = 
ct) and frequency shift as Doppler  shift, then this G becomes the Heisenberg 
group. (iii) I f  G is taken as the Galilei or Poincar6 group and X is taken 
as phase space, then the action of group elements on subsets of  X is naturally 
defined and (8) represents an equivalence principle of  relativity. 

In what follows, we shall find that classical quantum measuring 
apparatuses,  and in particular the covariant ones, are the most interesting 
to analyze. We shall also see why the adjective "classical" is appropriate.  

4. S O M E  M A T H E M A T I C A L  RESULTS 

I begin with some standard definitions. 

Definition 6. Let Y. be a sigma algebra on X;  that is, E is a set of  
subsets of  X such that: 

(i) X e Y; 
(ii) i f A ~ E ,  t h e n X - A ~ E ;  
(iii) if A e E, i c / ,  I finite or countable, then U i ~  As e Z. 

In this case (X, E) is referred to as a measurable space, and any subset 
of  X is measurable if it is in E. A function f :  X ~  is measurable if[ 
f - l ( ( - c o ,  x)) e E for all x ~ ~. A complex-valued function is measurable iff 
its real and imaginary parts are both measurable. 
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Definition 7. A func t ion /z  defined on s igma algebra  X is a measure if: 

(i) /x: X--,•_>oW{Oo}; 
(ii) if  {Ail i c I} is a countable  family in X that  is disjoint (Ai n Aj = Q 

for  i # j ) ,  then 

(iii) ~ ( A ) < o e  for at least one A~X.  

A measure  /x is a (Kolmogorov) probability measure if, in addit ion,  
. ( x )  = 1. 

A measure space is a triple (X, Y.,/x) where (X, X) is a measurab le  
space  and ~ is a measure  on (X, X). 

A complex  measure  is a funct ion Ix: X ~ C satisfying (ii). Note  that  
I~(A)I <0o  for all A c Y~ holds automatical ly .  Any such tx can be writ ten 
~ = ~/'1 --~[s -~ i/&3 - -  /]s where the/xj,  j = 1 , . . . ,  4, are (real-valued) measures .  

Definition 8. Let N be a Hilber t  space,  (X, Z) a measurab le  space.  Let 
A be a funct ion defined on 5~ with values in the set o f  posit ive self-adjoint  
opera tors  on ~.  Then A is a positive operator valued measure (POV or 
effect-valued measure) if: 

(i) A ( X ) =  1, 
(ii) if {Ai, i c I} is a countable ,  disjoint family  in E, then A ( U ~ t  Ag) = 

Xi~I A(Ai). 

Lemma 9. Let (X, ~)  be a measurab le  space,  ~ a Hi lber t  space,  A a 
POV m a p p i n g  ~ to opera tors  in ~ .  Let 9, $ ~ ~g, and let p be a posit ive 
trace class operator .  Then /z , , , (h)  --- (9, A(A)9) ,  and  ~ , ( A ) - - - T r [ p A ( A ) ]  
define measures  on (X, X), and /z~,,(A)---(tb, A(A)9)  defines a complex  
measure .  I f  l]9]] = 1, then /z, , ,  is a probabi l i ty  measure .  I f  p has Tr p = 1, 
making  p a quan tum densi ty operator ,  then /% is a probabi l i ty  measure .  
Note  also that  since A(A) is positive, it has a posit ive square  root. Apply ing  
the C a u c h y - S c h w a r z - B u n i a k o w s k i  inequality,  we obtain  

I~,. .(a)l  2= I<O, A(A)9)I2-< mo.,(a)~z,~.~(~X) 

From A(A)---1,  we also obtain  the general  relat ions 

I~,~.,(a)l-< II01111911 

~ . . ( a )_<  11911 ~ 

~p(A) _< T r ( p )  
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The proofs of all these results follow immediately from the definitions 
and will be omitted. The proofs of the remaining theorems in this section 
are mostly technical, and I refer to Schroeck (1988) for them. 

Definition 10. Let (X, s be a measurable space and let ~ be a Hilbert 
space. Let A denote a POV from Z to bounded operators in ~. I then define: 

=- {Y~j cjA(Aj)I{A j} is a finite measurable partition of X, cj e C}. 
cr ___ closure of ~ in the uniform topology. 

~ ,  =-closure of (6, in the weak* topology, where c~ is viewed as lying in 
the dual of a complete base norm space, with base given by the 
positive trace class operators of trace one, 

%~ -= closure of ~ in the following sense: let {Aj} be a sequence in c~; let 
D(B) = {6 ~ ~l{Ai~} converges strongly}; on D(B) define the linear 
operator B by B6 = limi{A~tp}; c~ is the set of all such B. 

~w -= closure of ~ in the following sense; let {Ai} be a sequence in ~; let 
D(B) = {6 e ~1(r A~)  converges for all ~ in some dense subset of  

which may be chosen independent of tp}; then we may define a 
linear operator B with domain D(B) by (~p, B$) = limi(~o, Ai~b); ~w 
is the set of all such B. 

One has the inclusions ~ c  ~ , c  ~w,c  ~ c  cr and ~ , c  ~ ( ~ ) .  Fur- 
thermore, in all cases D(B) is a linear subspace of ~. It is generally not a 
closed subspace, and elements of ~ ,  COw may be unbounded operators. 

For simple measurable function s = ~ qX(h~), I finite, c~ e C, 2r the 
characteristic function, define 

a(s) = ~, c~A(A,) (9) 
i ~ I  

Thus, a provides a finite linear extension of A. Let us investigate limits of 
such operators a(s).  One trivial but useful property of a is that for s~ and 
se simple measurable functions with s~ -< &, then, by positivity of the A(A~), 
a(sO<-g(s2). 

The elements of ~ constitute the observables associated most directly 
with the apparatus. In the case in which there is a finest partition of  the 
quantum apparatus which is also finite, then (r qg~, cr ~ ,  and ~w all 
coincide; so there is nothing to prove. Thus we must have a quantum 
measuring apparatus which is classical (in our sense) over an infinite set 
X in order to obtain anything interesting and new. In fact, I shall be most 
interested in the case where X is a continuum subset of  I~". To proceed, I 
introduce the analog of absolute continuity but for operator-valued 
measures. 

Theorem 11. Let X = ~  k, and let s be the smallest sigma algebra of 
subsets of X containing the open sets. (~ is called the set of Borel sets.) 
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Under reasonable conditions on the Hilbert space ~ and measure IX (Y( is 
separable and Ix is a positive, sigma finite Borel measure), and if A is a 
POV from X to the bounded operators on )if satisfying (10), 

there exists c > 0  such that IIA(A)ll--cix(A) VA~X (10) 

then there is a family {a(x)]x ~ X} of positive self-adjoint operators with 

Ila(x)[I-< c for almost all x ( l l a )  

A(A) = fa a(x) dix(x) ( l l b )  

Conversely, any POV satisfying (11) also satisfies (10), and c may be taken 
to be ess supx~x[lg(x)[]. 

I denote the condition (10) by A <<cix. 

Lemma 12. Let (X, ~:, Ix), ~,  and A be as above. Then the following 
are equivalent: 

( i )  a << c IX 
(ii) /x~,,~(A)-< cllr II~llix(A) for all 6, r ~ Y( 
(iii) IX~,,,(A) -< cll4,[[2ix(~) for all 6 ~ Y( 
(iv) IXp(A)- < c Trpix(A)  for all positive trace class operators p 
(v) IX~,,~(A) -< cix (A) for all 0, r ~ ~,  II q, II = II ~ [I = 1 
(vi) IX,.6(A)-< cix(A) for all 6 c Yg, II q, II = 1 
(vii) IXp(A)_< cix(A) for all density operators p. 

I only mention this result since these various definitions of "absolute 
continuity" may occur in the literature, each being in some sense a natural 
definition. For example, see Holevo (1982, p. 52). 

Theorem 13. Let (X, Z, Ix) be a measure space, ~ a Hilbert space, A 
a POV from Z to bounded operators on Yg satisfying A <<~IX. Then (9) 
extends uniquely to a linear map from LP(X, IX), l<-p<-oo, to the set of 
bounded operators in Y( satisfying, for f real, 

]]a(f)[[-< cl/pl]f llp 

I f f  is complex-valued, then dividing into the real and imaginary parts, the 
inequality above needs only be modified by a factor of 2. [Recall LP(X, Ix) = 
{f: X ~ C  such that [[f(x)lPd~(x)<oo}, l<_p<oc. Then define Ilfl[~= 
[I If(x)[ p dix(x)]'/P; [Ifll~-- ess suplf(x)l.] Furthermore, one has the rep- 
resentation 

a ( f )  = ff(x).(x) aix(x) (12) 
J~ 
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where a (x )  is the density for A obtained in Theorem 11. In case f is also 
real-valued, then a ( f )  is in fact a self-adjoint operator. 

Definition 14. Let A be a compact  operator  in Y(; i.e., (AA*) ~/2 
has purely discrete spectrum {ak} with each O~k of finite multiplicity, 
except for perhaps an accumulation point at O. Then A is of  trace class 
~p iff ~k ( a k )  p < O0" 

Theorem 15. (Schroeck, 1988). Under the conditions of  Theorem 13 
and with the additional condition T r [ a ( x ) ] - K  for almost all x ~ X, with 
K a fixed constant, and f o r f ~  LP(X, tx), where 1 - < p - < ~ ,  then a ( f ) c  ~p. 
Since these classes are all classes of  compact  operators,  it follows that each 
such a ( f )  for f real-valued has purely discrete spectrum and a complete 
orthogonal set of eigenvectors. For the case p = l, one furthermore has 
T r [A( f ) ] -<  K ][flll, and i f f  is nonnegative, this is even equality. 

I should add a remark here that this result is somewhat  surprising, 
since these a ( f )  are obtained by making generally unsharp measurements 
to get a POV in the first place, and then further smearing out the data by 
integrating with respect to fdix. For example,  if the f describes a confidence 
function, then f e  LI(X, Ix); so a ( f )  is trace class and hence has purely 
discrete spectrum, etc. The special choice f(x)=[ix(A)]-lXa(x) is also 
L~(X, Ix) for A ~ E, Ix(A) < oo, and in this case a ( f )  = A(A), a simple effect. 
Hence, the effects in this situation have eigenvectors, and even a complete 
orthogonal set of  them. However, whenever f is a confidence function, then 
the spectrum of a ( f )  is strictly less than 1 (and nonnegative), so that the 
system always attenuates its eigenmodes. "Measurement  with probabili ty 
one" is excluded. This answers a question raised some years past (Schroeck, 
1981). 

Of  course, all of  this depends on the density being trace class. This is 
not an unusual circumstance. It occurred in our signal analysis problem in 
which each a (x)  was a one-dimensional projection, hence having trace = 1. 
Neither is it unusual in the case of localization observables which are 
covariant with respect to the Galilei or Poincar6 group, as the following 
two theorems show. 

Theorem 16. Let (X, E, ~), A, and ~ be as before, and A << c Ix with 
density a(x) .  Let A satisfy the covariance condition (8) with respect to 
continuous symmetry group G. Then a (x)  is a continuous function of x, and 

U(g)a(x) U(g)* = a (g [x ] )  (13) 

Consequently, Ila(g[x])ll = Ila(x)ll and T r ( a ( g [ x ] ) ) =  Tr(a(x) ) ;  so we only 
need a bound on (the trace of) a at one point x ~ X in order to get a bound 
at all points in the orbit {g[x] ]g ~ G} of x. I f  G is transitive on X, i.e., if 
this orbit is all of  X, then we may take c = ]]a(x)]l at essentially any x. 
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Theorem 17. For the covariant localization operators obtained in the 
phase space representations of  the Galilei and Poincar6 groups (Ali and 
Prugove~ki 1986; Ali et al., 1988; Brooke and Schroeck, to appear),  all 
conditions of  Theorem 16 are met and a (x )  is either a density operator  
(trace = 1) or, in the case of  irreducible representations, a one-dimensional 
projection (trace = 1). Hence, we may also take c = 1 in these cases. Further- 
more, the a(x) are strongly continuous functions of  x. 

I f  we couple this result with Theorem 15, we obtain K = 1, and 
T r [ A ( f ) ]  = Ilfll~ for f ~  L~(X, I~), f nonnegative. This is a form of uncer- 
tainty relation closely connected with the channel capacity theorem in signal 
analysis. To see this connection, let A be a rectangle in phase space of 
dimension 2d (or in the t ime-frequency domain) of  width AQ and height 
Ap (or time width 2 T and bandwidth W). L e t f  be the characteristic function 
of z~. Then/z  (A) = (27rh)-d2~ QAp, and similarly in the t ime-frequency case. 
Next let {ak} denote the set of  eigenvalues listed in decreasing order and 
listed as often as the multiplicity. Now, ~kak =(27rh)-dAQAP. Let us 
choose B ~ (0, 1) to represent the lowest attenuation with whiCh we agree 
that a wavefunction may be considered to be localized in 2~; that is, ~O is 
considered localized in A if[ II q, II ~ B II q' II- Suppose that N = the number  
of  the ak counted with multiplicity with ak >--B. Then NB<-Tr[A(f)] = 
(2~h)-dAQAp. The spectrum of the localization operators A(A) in the 
solved cases all have ak initially close to 1, and remaining close to one until 
they drop precipitously to close to zero (Slepian and Polak, 1961; Landau 
and Polak, 1961, 1962; Slepian, 1964; Daubechies, 1988). Thus, we may 
effectively take B = 1 to get a bound on N. In signal processing this is called 
the 2TW theorem, or the channel capacity theorem. [For further applications 
of  the theory to signal processing and experimental physics see Healy and 
Schoeck (1988).] I also remark that if ApAQ < (27rh) d, then NB < 1; so 
effectively no state may be localized with this much precision without severe 
attenuation. 

There are of  course more general cases than f ~ L v (X,/~). For example,  
no polynomial is of any L p type. To handle these cases, we return to (12) 
and consider (12) to be defined weakly on pairs of  vectors ~b, r ~ Y( for which 

f f ( x )  d/x,~,,p(x)=(q~,ff(x)a(x)dtz(x)~) (14) 

exists. For fixed f, the set of  such ~ and the set of such ~ each forms a 
linear space. In this way we may obtain Sf(x)a(x) dlx(x) as the operator 
density for a bilinear form. Furthermore, the left-hand side of  (14), being 
a standard integral of  a measurable function f, may be obtained as a limit 
of integrals of  simple measurable functions s, with s, ~ f  Thus, once again, 
the relation (9) completely determines all functions defined through (14) 
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and leads us from <g to ~w. It also takes the range out of the set of  bounded 
operators, and out of the set of  operators with purely discrete spectrum, as 
the following example shows. 

Let G = Heisenberg group, X = F = phase space with points denoted 
(q, p), q = position, p = momentum,  a(q, p) = projection onto the basic har- 
monic oscillator state with expected position = q, expected momentum = p, 
d~(q, p ) = ( 2 7 r h )  -1 dqdp. Then (Schroeck, 1981) for f(q, p)=q we have 
g(f)=Q=position operator,  and for f(q, p)=p we obtain a ( f ) = P =  
momentum operator. Hence these coexistent observables are unbounded 
self-adjoint operators, with purely continuous spectrum and in fact observ- 
ables which do not commute.  

For another example of  noncommuting observables which are 
coexistent (albeit bounded) see Schroeck (1982), in which a model is given 
in which different components  of  spin are coexistent. 

Finally, if the a(x) are one-dimensional projections onto a subspace 
spanned by vector ~0, and ~ is such that (4', U(g)qJ) # 0 for almost all g ~ G, 
then the set {a(x)} is informationally complete (Healy and Schroeck, 1988). 
From a recent theorem (Busch, 1988), one then knows that (r is the set 
of  all bounded operators in ~. 

5. C O N N E C T I O N  W I T H  Q U A N T I Z A T I O N  

Let us assume from the start that we have a POV A with density a, 
trace of  g(x) = 1, A covariant with respect to symmetry group G of the 
usual types of  symmetries: translations, rotations, and other symmetries of 
the Galilei group. We shall also take X = F = phase space of dimension 2d. 
Let p be any density operator. Then P'o is a classical probability distribution 
with continuous density tz'o(q, p)=Tr[pa(q,p)]. Notice now that the 
classical expectation of the classical observable (measurable function) f is 
given by 

classical expected value = I f(q' p) d~p(q, p) 

= f f(q, P)#'o(q, P)(Z~'h) -a dq dp 

= I f (q ,  P) Tr[pa(q, p)](Z~rh)-adqdp d 

= Tr[ pa(f)] 

= quantum expected value. 
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Thus the pair of mappings 
(i) p~/z~,(q, p), (ii) f ~  a ( f )  

provide, respectively, (i) a dequantization of states and (ii) a quantization 
of observables, which preserves expectation values. It also establishes the 
connection Poisson bracket ,~ commutator [Lie] bracket and connects 
quantum and classical dynamics (Schroeck, 1985c). In fact either of (i), 
(ii) implies the other (Guz, 1984a, b). Notice that this quantization/dequan- 
tization scheme depends essentially on the density a(x) and hence essentially 
on the POV A, which in turn is determined by the measuring apparatus. In 
the choice a(q, p) = ground state of the harmonic oscillator described above, 
then, the map f ~  a ( f )  is antinormal ordering, as I shall show below. For 
a general a(x), one could compute directly which operators the choices q, 
p, qp, Pq, qp2, etc., for f yield. [The a ( f )  are functions of the Q and P 
operators. Thus, the apparatus "solves" the ordering problem in that it 
completely determines this map f-~ a ( f ) ,  and the ordering is completely 
determined by the map f-~ a(f) . ]  

Another point concerning this quantization/dequantization scheme is 
that it establishes an equivalence between the quantum formalism and the 
classical one without taking the limit h ~ 0. Since h is a physical constant, 
this is a good thing. 

A further point is that once we have a "classical" quantum measuring 
apparatus, we obtain this equivalence between the classical and quantum 
representations of the system; that is, such a quantum system can be 
accurately described classically! 

To see that the choice a(q, p) --projection onto the ground state of the 
harmonic oscillator as above gives normal ordering, recall that the harmonic 
oscillator ground-state wave function is annihilated by the lowering 
operator. I will demonstrate with a d -- 1 Calculation. After shifting in phase 
space by (q, p), this annihilation property reads 

(P + iQ)a(q, p) = (p + iq)a(p, q) (15) 

and hence 

(P + iQ)"a(p, q) = (p + iq)"a(p, q) 

Taking adjoints, we obtain 

a(p, q)(P - iQ) n = (p - iq)na(p, q) 

( P + iQ)ma(p, q)( P -  iQ) n = (p + iq)m(p - iq)na(p, q) 

From (2c), (12), and this we obtain 

(27rh) -1 f (p - iq )m(p+iq )na(p ,  q) dqdp = ( P + i Q ) n ( P - i Q )  m (16) 
J 
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Using (16) and  p = [ ( p +  i q ) + ( p - i q ) ] / 2 ,  and  s imi lar ly  for  q, one can now 
easi ly compu te  the quan t i zed  vers ion of  pmqn or of  any  po lynomia l  in p 
and  q, the reby  showing  that  this quan t iza t ion  co r r e sponds  to no rma l  order -  
ing. The d = 3 ca lcu la t ions  are  a lmost  ident ica l .  

6. C O N C L U S I O N  

We have seen that  for  large classes o f  quan tum measur ing  appa ra tuses ,  
the a p p a r a t u s  i tself  de te rmines  a POV, the set o f  all coexis tent  obse rvab les  
that  can be measu red  with the appara tus ,  and  a q u a n t i z a t i o n / d e q u a n t i z a t i o n  
scheme wi thout  the h ~ 0 limit.  This connec t ion  al lows a new in te rp re ta t ion  
of  the concep t  o f  a c lass ical  appa ra tu s  for  measur ing  a qua n tum system, 
c i rcumvent ing  a semic lass ica l  t rea tment .  The class o f  coexis tent  observab les  
so ob t a ined  is genera l ly  not  commuta t ive .  This class may  be an in forma-  
t iona l ly  comple t e  set o f  observab les ,  which  is a vast  i m p r o v e m e n t  over  the 
spectra l  measures  (p ro j ec t ion -va lued  measures )  o f  pos i t ion  only  and  o f  
m o m e n t u m  only,  even when  combined .  We ob ta in  new ways o f  express ing  
uncer ta in ty  re la t ions ,  app ly ing  them s t ra igh t fo rward ly  to signal  analys is  
and  o ther  a reas  o f  expe r imen ta l  physics.  The  analys is  here extends  the class 
o f  coexis ten t  observab les  b e y o n d  the set o f  s imple  effects de t e rmine d  by 
the appa ra tu s  and  gives a f o u n d a t i o n  for  the  phys ica l  in te rp re ta t ion  o f  this 
ana log  o f  the spect ra l  t heo rem for in tegra t ion  with respect  to a POV. Fina l ly ,  
each such "c l a s s i ca l "  a p p a r a t u s  de te rmines  its own q u a n t i z a t i o n / d e q u a n t i -  
za t ion  scheme,  its own so lu t ion  to the o rder ing  p rob lem,  and  its own classical  
r ep resen ta t ion  o f  the q u a n t u m  system. 
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